8.3 尋找估計式之方法

在8.2節中提過評斷優良估計式之一些準則,但這些優良估計式要如何 尋找?便是本節要討論的重點,一般尋找估計式常見方法有:

- ○最大概似法(method of maximum likelihood)。
- □動差法 (method of moment)。
- ⑤最小平方法(method of least square)。
- 四最佳線性不偏估計法(BLUE)。
- (四) 具氏估計法(method of Bayes)。 本節除了最小平方法留在迴歸分析時再討論,其餘方法分述如下。

一、最大概似法

- Θ 最大概似法之觀念:一般母體之參數 θ 皆未知,今若從此母體抽出一組隨機樣本,此組樣本之可能性無法得知,因此若能找到一個估計值 $\hat{\theta}$,且可使這組樣本發生之可能性爲最大時,則此估計值 $\hat{\theta}$ 即稱爲 θ 之最大概似估計值。
- □最大概似估計式之相關定義:
- 定義 $(X_1,X_2,...,X_n)$ 為抽自母體 $f(x;\theta)$ 之一組隨機樣本,則其概似函數(likelihood function)即為此n 個隨機變數 $(X_1,X_2,...,X_n)$ 的聯合機率分配 $f(x_1,x_2,...,x_n;\theta)$ 。因為參數 θ 未知,故此概似函數為 θ 的函數,一般常將其寫爲

$$L(\theta) = f(x_1, x_2, ..., x_n; \theta) = f(x_1; \theta) \cdot f(x_2; \theta) \cdot \dots \cdot f(x_n; \theta)$$
$$= \prod_{i=1}^n f(x_i; \theta)$$

定義($^{\circ}$): 若 $L(\theta)$ 為概似函數,今有一個估計式 $\hat{\Theta}(X_1,X_2,...,X_n)$ 可使 $L(\theta)$ 為最大時,則此估計式 $\hat{\Theta}(X_1,X_2,...,X_n)$ 即稱為參數 θ 的最大概似估計式 (MLE)。而當獲取樣本資料值 $(x_1,x_2,...,x_n)$ 代入上式估計式 $\hat{\Theta}(X_1,X_2,...,X_n)$ 可知 $\hat{\theta}$,而 $\hat{\theta}$ 即為參數 θ 之最大概似估計值。

8-20 統計學(概要)

定理 \Box : 若概似函數 $L(\theta)$ 可微分,則一般在求算 MLE 之步驟如下:

1. 先找概似函數,即
$$L(\theta) = f(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$
。

$$2. \ominus \frac{d \ln L(\theta)}{d \theta} = 0$$
,解 θ ,可獲得 $\hat{\theta}$ 。

$$3.$$
再檢查 $\frac{d^2 \ln L(\theta)}{d\theta^2} \Big|_{\hat{\theta}} < 0$ 。

則此估計式 $\hat{\Theta}$ 即爲 θ 之最大概似估計式。

→ 例題 13・

設隨機變數X為幾何分布 $f_X(x) = p(1-p)^{x-1}$, x = 1,2,...且 $p \in (0,1)$ 自此母體隨機抽取 X_1 , $X_2,...,X_n$ 之隨機樣本。試以最大概似法(Maximum likelihood estimator)估計p,記為 \tilde{p} 。 (97國安局三等、98關務)

SOI :

$$\exists L(p) = f(x_1; p) \cdot \dots \cdot f(x_n; p) = p(1-p)^{x_1-1} \cdot \dots \cdot p(1-p)^{x_n-1}$$

$$= p^n (1-p)^{\sum_{i=1}^n x_i - n}$$

$$\exists \ln L(p) = n \ln p + (\sum_{i=1}^n x_i - n) \ln(1-p)$$

且
$$\frac{d \ln L(p)}{dp} = \frac{n}{p} + \frac{\sum_{i=1}^{n} x_i - n}{1 - p} (-1)$$
 ; 令 $\frac{d \ln L(p)}{dp} = 0$,則可知
$$\frac{n}{p} = \frac{\sum_{i=1}^{n} x_i - n}{1 - p} \Rightarrow n - np = p \sum_{i=1}^{n} x_i - np$$

$$\Rightarrow p = \frac{n}{\sum_{i=1}^{n} x_{i}} = \frac{1}{\overline{x}} , \quad \boxed{\frac{d^{2} \ln L(p)}{dp^{2}}} = \frac{-n}{p^{2}} + \frac{-(\sum_{i=1}^{n} x_{i} - n)}{(1 - p)^{2}}$$

$$\boxed{\mathbb{E} \frac{d^{2} \ln L(p)}{dp^{2}} \Big|_{P = \frac{1}{\overline{X}}}} = \frac{-n\overline{x}^{3}}{\overline{x} - 1} < 0$$

故知參數p之最概似估計式為 $\hat{P} = \frac{1}{\bar{X}}$

→ 例題 14・

自母數為 λ 之卜瓦松分配(Poisson distribution)抽出一大小為n的隨機樣本 $X_1,X_2,...,X_n$,以估計此一未知母數 λ 。

- ①試求 λ 之最概估計量(Maximum likelihood estimator) $\hat{\lambda}$ 。
- (2) 驗證此最概估計量 $\hat{\lambda}$ 是否為 λ 之一不偏估計量 (Unbiased estimator)。 (94關務三等、99地方政府經行)

SOI :

又
$$\frac{d^2 \ln L(\lambda)}{d\lambda^2} = \frac{-\sum\limits_{i=1}^n x_i}{\lambda^2}$$
,且 $\frac{d^2 \ln L(\lambda)}{d\lambda^2} \bigg|_{\lambda = \overline{x}} = \frac{-\sum\limits_{i=1}^n x_i}{\overline{x}^2} = \frac{-n}{\overline{x}} < 0$ 故 知 λ 之 最 大概 似 估 計 式 為 $\hat{\lambda} = \overline{X}$ 。

(2)
$$E(\hat{\lambda}) = E(\overline{X}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \sum_{i=1}^{n} \lambda = \frac{1}{n} n\lambda = \lambda$$
 故知 $\hat{\lambda} = \overline{X}$ 為母數入之不偏估計式。

- 例題 15 -

設 $(X_1, X_2, ..., X_n)$ 為抽自 $N(\mu, \sigma^2)$ 之一組隨機樣本,試求 μ 及 σ^2 之最大概似估計量。

SOI :

$$\begin{cases} \frac{\sum_{i=1}^{n} (x_i - \mu)}{\sigma^2} = 0 & (1) \\ \frac{-n}{2\sigma^2} + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^4} = 0 & (2) \end{cases}$$

再解此聯立方程式,由第(1)式中可知

$$\sum_{i=1}^{n} (x_i - \mu) = 0 \quad , \quad \mathbb{F} \sum_{i=1}^{n} x_i - n\mu = 0 \quad , \quad \mathbb{F} \bowtie \mu = \overline{x}$$

今將 $\mu = \overline{x}$ 代入第(2)式知

$$\frac{-n}{2\sigma^2} + \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{2\sigma^4} = 0 \quad \text{if } \sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

故參數 μ 之最大概似估計式為 $\hat{\mu} = \bar{X}$

而參數
$$\sigma^2$$
之最大概似估計式為 $\hat{\sigma}^2 = \frac{\sum\limits_{i=1}^n (X_i - \bar{X})^2}{n}$

在上述所舉例子中可發現,其求解過程皆有一定程序,但有些概似函數 $L(\theta)$ 並無法以定理因之三個步驟求得 MLE 。此時可能要利用數值分析方式來探討才能獲得參數 θ 之 MLE ,且各種不同題型求算方式可能也不同,底下所舉的例子皆爲不可微,因此讀者必須多練習才能獲得解題技巧。

→ 例題 16 •

設隨機變數X為分布於 $[0,\theta]$, $\theta>0$ 的均勻分配,自此母體隨機抽取 X_1 , $X_2,...,X_n$ 之隨機樣本。試以最大概似法(Maximum likelihood estimator)估計 θ ,記為 $\hat{\theta}$ 。 (95 π 住民三等、高考)

S01:

$$\boxtimes L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \frac{1}{\theta} \cdot \frac{1}{\theta} \cdot \dots \cdot \frac{1}{\theta} = \frac{1}{\theta^n}$$

又 $L(\theta)$ 為 θ 之嚴格遞減函數,今欲使 $L(\theta)$ 為最大時, θ 值應該取愈小

8-24 統計學 (概要)

愈好;又因
$$0 \le x_i \le \theta$$
, $i = 1, 2, ..., n$,且
$$0 \le x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)} \le \theta$$

因此當 θ 取 $\hat{\theta}=x_{(n)}$ 時能使 $L(\theta)$ 為最大。故知 θ 之最大概似估計式為 $\hat{\theta}=X_{(n)}=\max(X_1,X_2,...,X_n)$

→ 例題 17•--

設(X₁, X₂,...,X_n)為抽自下列母體之一組隨機樣本

$$f(x) = \frac{1}{2c} \qquad , \quad \theta - c \le x \le \theta + c$$

試求參數heta之最大概估計式,記為 $\hat{ heta}$ 。

(高考)

SOI :

因
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \left[\frac{1}{2c}\right]^n$$
 , $\theta - c \le x_i \le \theta + c$
故 θ 取任何點皆能使 $L(\theta)$ 最大,但因
 $\theta - c \le x_i \le \theta + c$, $i = 1, 2, ..., n$,且知
 $\theta - c \le x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)} \le \theta + c$,又
$$\begin{cases} \theta - c \le x_{(1)} \Rightarrow \theta \le x_{(1)} + c \\ \theta + c \ge x_{(n)} \Rightarrow \theta \ge x_{(n)} - c \end{cases}$$

 $\mathbb{P} x_{(n)} - c \le \theta \le x_{(1)} + c$

所以 θ 之最大概似估計式為取介於區間 $[X_{(n)}-c,X_{(1)}+c]$ 中之任一估計式,可以 $\hat{\theta}=\alpha(X_{(n)}-c)+(1-\alpha)(X_{(1)}+c)$ 表示,其中 $0\leq \alpha\leq 1$ 。

→ 例題 18 •

在阿姆斯特丹街頭看車流,請利用最大概似法估計該市自行車總數。 假設該市發自行車牌照,按流水號數,且自1號發起。

SOI :

因任一輛車被看到之機會皆相同,故

$$f(x) = \frac{1}{N}$$
 , $x = 1, 2, ..., N$

因
$$L(N) = \prod_{i=1}^{n} f(x_i; N) = \frac{1}{N} \cdot \frac{1}{N} \cdot \dots \cdot \frac{1}{N} = \frac{1}{N^n}$$

又L(N)為N之嚴格遞減函數,故當N愈小時,L(N)愈大,

又因
$$1 \le x_i \le N$$
 , $i = 1, 2, ..., n$

且 $1 \le x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)} \le N$,所以當 N 取最小 $x_{(n)}$ 時 L(N) 為最大,亦即 $N \ge MLE$ 為 $\hat{N} = X_{(n)} = \max(X_1,...,X_n)$

四MLE之性質:

- 1. MLE 不一定具有不偏性。
- 2. MLE 為在最樂觀的評判標準下所選出之估計式,故並不能保證為最好的估計式。
- 3. MLE 不一定只有一個,即不唯一。
- 4. $MLE(\hat{\Theta}) \sim N(\theta, CRLB)$ 。
- 5. MLE 具有不變性(invariance),即若 $\hat{\Theta}$ 爲 θ 的最大概似估計式,則 $u(\hat{\Theta})$ 亦爲 $u(\theta)$ 之最大概似估計式,其中 $u(\theta)$ 爲 θ 之任意函數。

→ 例題 19 •

在例題14中,試求:

P(X = 0) 及 P(X ≥ 1) 之最大概似估計式。

SOI :

由例題14知 λ 之MLE為 $\hat{\lambda} = \overline{X}$,又

$$P(X=0) = \frac{e^{-\lambda} \cdot \lambda^0}{0!} = e^{-\lambda}$$

故由MLE之不變性知, $P(X=0)=e^{-\lambda}$ 之MLE為 $e^{-\overline{X}}$

$$\nearrow P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{e^{-\lambda} \cdot \lambda^0}{0!} = 1 - e^{-\lambda}$$

故由MLE之不變性知, $P(X \ge 1) = 1 - e^{-\lambda}$ 之MLE為 $1 - e^{-\overline{X}}$

二、動差法

- (-)動差法之觀念:動差法是因爲隨機樣本 $(X_1, X_2, ..., X_n)$ 的 k 階原動差,爲母體 f(x)的 k 階原動差之不偏估計式,因此利用此二種原動差近似相等的觀念,所建立之一種求估計式之方法稱之爲動差法。
- □動差法之定義:
- 定義(ハ): 設 $(X_1, X_2, ..., X_n)$ 為抽自母體 $f(x; \theta)$ 之一組隨機樣本,則利用樣本 k 階原動差,去估計母體 k 階原動差而獲得母體參數 θ 之估計式,即為動差估計式 (MME),而此方法稱為動差法。
 - (=) 動差法之求解過程:令 $\mu_k'=m_k'$,k=1,2,...,p,此處p 表示母體中參數的個數,再求解這組聯立方程式,便可解出參數之動差估計式。其中

$$\mu'_k = E(X^k)$$
 爲隨機變數對原點的 k 階動差。
$$m'_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 爲 $(X_1, X_2, ..., X_n)$ 對原點的 k 階樣本動差。

→ 例題 20 •

試求例16中 θ 之動差估計式 $\hat{\theta}$,並驗證 $\hat{\theta}$ 是否具有不偏性。

(95原住民三等)

SOI :

因 $X \sim U(0,\theta)$,故知X之一階原動差為

$$\mu_1' = E(X) = \frac{\theta}{2}$$

又樣本一階原動差為

$$m_1' = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}$$

$$\diamondsuit \Leftrightarrow \mu_1' = m_1' \Rightarrow \frac{\theta}{2} = \overline{x} \Rightarrow \theta = 2\overline{x}$$

故 θ 之動差估計式為 $\hat{\theta} = 2\bar{X}$

$$\vec{x} E(\hat{\theta}) = E(2\bar{X}) = 2E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{2}{n}\sum_{i=1}^{n}E(X_{i}) = \frac{2}{n}\sum_{i=1}^{n}\left(\frac{\theta}{2}\right) = \frac{2}{n}\frac{n\theta}{2} = \theta$$