題型2.1 高階線性常係數O.D.E.齊性解

本題型所探究的高階常係數線性O.D.E.可表示成:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \dots + a_1 y' + a_0 y = R(x)$$
(2-1)

其中 $a_n \cdot a_{n-1} \cdot a_{n-2} \cdot \cdot \cdot \cdot \cdot a_1 \cdot a_0$ 均爲常數。

若 R(x) = 0 時,稱方程式爲齊性(homogeneous),若 R(x) ≠ 0 時,則稱方程式爲非齊性(nonhomogeneous)。本節主要介紹高階常係數線性 O.D.E.之齊性解(homogeneous solution)求解方法,因此標準式爲如下所示:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \dots + a_1 y' + a_0 y = 0$$
 (2-2)

(-)一個n階常係數線性O.D.E.之齊性解係針對下列O.D.E.求解:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_{n-2} y^{(n-2)} + \dots + a_1 y' + a_0 y = 0$$

齊性解一般表示爲 y_h ,求解方法係令 $y=e^{mx}$, $-\infty < x < \infty$ 代入原 O.D.E.,得

$$(a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0) y = 0$$
(2-3)

又因爲 $y=e^{mx} \neq 0$,所以滿足式(2-3)的條件式爲

$$a_n m^n + a_{n-1} m^{n-1} + \dots + a_1 m + a_0 = 0$$
 (2-4)

一般將(2-4)式稱爲以m爲變數之代數方程式或輔助方程式,而對於任何高階O.D.E.我們可利用分解因式法,將(2-4)式分解成一階與二階之代數方程式的組合如下所示:

$$(m-m_1)(m-m_2)\cdots(m^2+am+b)=0$$

可得 $m_1 \times m_2 \times m_3 \cdots m_n$ 等n個輔助方程式的根,也就是有n個線性獨立解,進行線性組合,則可得到原O.D.E.之通解。

- (\Box) 1. 若 m_1 、 m_2 、 m_3 …… m_n 均爲n個相異之實根,則原O.D.E.之通解爲 $y_h = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \cdots + c_n e^{m_n x}$
 - 2. 若 $m_1 \times m_2 \times m_3 \cdots m_n$ 具有k個重複實根,也就是說 $m_1 = m_2 = m_3 = \cdots = m_k$, m_{k+1} , … , m_n ,則原O.D.E.之通解爲 $y_h = (c_1 + c_2 x + \cdots + c_k x^{k-1})e^{m_k x} + c_{k+1}e^{m_{k+1} x} + \cdots + c_n e^{m_n x}$

2-4 工程數學(上)

3. 若具有k個共軛複實根,也就是說 $m_1 = \alpha_1 \pm i\beta_1$, $m_2 = \alpha_2 \pm i\beta_2$,…… $m_k = \alpha_k \pm i\beta_k$ 則原O.D.E.之通解爲:

 $y_h = e^{\alpha_1 x} (c_1 \cos \beta_1 x + c_2 \sin \beta_1 x) + e^{\alpha_2 x} (c_3 \cos \beta_2 x + c_4 \sin \beta_2 x) + \cdots$

三若方程式必須滿足初始條件時,則應該把初始條件代入通解,以求得通解中的常數項。

四以二階爲例,當二階常係數線性O.D.E.爲 ay'' + by' + c = 0 令 $y = e^{mx}$,則 $y' = me^{mx}$, $y'' = m^2 e^{mx}$ 代入原式O.D.E. ,得 $(am^2 + bm + c)e^{mx} = 0$

因爲 $y=e^{mx}\neq 0$,所以得輔助方程式 $am^2+bm+c=0$,即可得二個根 $m_{1,2}=\frac{1}{2a}(-b\pm\sqrt{b^2-4ac})$

現在分別針對三種可能情形進行討論,如下所示:

- 1. 若 m_1 、 m_2 均爲相異之實根 $(b^2>4ac)$,則原O.D.E.之通解爲 $y_h=c_1e^{m_1x}+c_2e^{m_2x}$
- 2. 若 m_1 、 m_2 爲重複實根 $(m_1=m_2=m_0)$,則原O.D.E.之通解爲 $y_h=(c_1+c_2x)e^{m_0x}$
- 3. 若 m_1 、 m_2 爲有共軛虚根 $(b^2 < 4ac)$,則 $m_{1,2} = \alpha \pm i\beta$,則原O.D.E.之 通解爲

$$y_h = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

→ 節題 2.1 →

試解下列O.D.E.

$$y^{(4)} + \beta y = 0$$
 其中 β 為常數

(中興土木)

Ans:

原O.D.E.可改寫為:
$$\left(其 + D = \frac{d}{dx} \right)$$

$$(D^4 + \beta)y = 0$$

本題可分為 β <0及 β >0分別加以討論

當
$$\beta$$
<0,令 β = $-k^4$, k >0