* 114 年度台大財金 *

多重選擇題,每題5分;每題答案可能不只一個。

- 1. Given two random variables, x and y with finite second moments, which of following statement(s) about independence is correct?
 - (A) If x and y are independent with each other, then they are uncorrelated.
 - (B) If x and y are uncorrelated with each other, then they are definitely independent of each other.
 - (C) If P(x = ay = b) = P(x = a) then x and y are independent of each other.
 - (D) If E(x|y) is a constant, then x and y are independent of each other.
- 2. A random variable $x \sim N^+(0, \sigma^2)$, where N^+ is a half-normal distribution that x is always positive and has a pdf, then we know:

(A)
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad -\infty < x < \infty.$$

(A)
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x}{2\sigma^2}\right), \quad -\infty < x < \infty.$$

(B) $f(x) = \frac{\sqrt{2}}{\sigma\sqrt{\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad o < x < \infty.$
(C) $E[x] = \sqrt{\frac{\sigma^2}{\pi}}.$

(C)
$$E[x] = \sqrt{\frac{\sigma^2}{\pi}}$$
.

(D)
$$Var(x) > \sigma^2$$
.

- 3. Which of following statement(s) about the Central Limit Theorem (CLT) is correct?
 - (A) If $p\lim x = \mu_x$, then CLT is held.
 - (B) If N > 30, then $\bar{x} \stackrel{A}{\sim} N(\mu_x, \sigma^2)$ under the conditions that the random variable *x* has finite mean and variance.
 - (C) If N > 30, then $\tilde{x} \stackrel{A}{\sim} N\left(\mu_x, \frac{\sigma^2}{30}\right)$ under the conditions that the random variable *x* has finite mean and variance.
 - (D) \bar{x} does not converge to normal distribution if x is a random walk process $x_t = x_{t-1} + w_t, \quad w_t \sim N(0, 1).$

· 2 · 台大財金 © 許誠哲(2025)

4. Given cdf of a random variable x: $F_X(a) = \frac{a^2}{36}$, then we have...

- (A) The pdf $f_X(a) = \frac{a}{18}$, $0 \le a \le 6$.
- (B) E(x) = 4.
- (C) $E(x^2) = 2$.
- (D) Var(x) = 2.
- 5. Let $u = (x b)^2$. x is a random variable and $E[(x b)^2]$ exists. Which of following statement(s) is correct?
 - (A) E(u) is minimal when b = 0.
 - (B) When b = 0, u is the variance of x.
 - (C) E(u) is minimal when b = E(x).
 - (D) When b = E(x), u is the variance of x.
- 6. A random sample $\{x_1, x_2, \dots, x_N\}$ is sampled, where $x_i \overset{i.d.}{\sim} N(\mu_x, \sigma_i^2)$, which means x is independent distributed to a normal distribution (note that heteroskedasticity exists). A point estimator is calculated as $\tilde{x} = \sum_{i=1}^{N} a_i x_i$; $\sum_{i=1}^{N} a_i = 1$. Then which of the following statement(s) is correct?
 - (A) \tilde{x} is unbiased to μ_x .
 - (B) \tilde{x} is a best linear unbiased estimator of μ_x .
 - (C) \tilde{x} is a best unbiased estimator of μ_x .
 - (D) \tilde{x} is a consistent estimator of μ_x , if $a_i = 1/N$.

© 許誠哲(2025) 台大財金·3·

7. A random sample $\{x_1, x_2, \dots, x_N\}$ is sampled, where $x \stackrel{i.i.d.}{\sim} N(\mu_x, \sigma^2)$. We define a downside standard deviation of x as $\hat{\sigma}_x^d = \sqrt{\frac{1}{N} \sum_{i=1}^N \max(o, -x_i)^2}$ and $\hat{\sigma}_x = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \mu_x)^2}$ is the classical standard deviation. Then we will obtain:

- (A) $\hat{\sigma}_x^d > \hat{\sigma}_x$.
- (B) $\hat{\sigma}_x^d < \hat{\sigma}_x$.
- (C) $\hat{\sigma}_x^d$ becomes larger when x is more positive skewed.
- (D) Both of $\hat{\sigma}_x^d$ and $\hat{\sigma}_x$ are biased estimators of population standard deviation σ .
- 8. A random variable $x \sim (\mu_x, 1)$, according to Chebyshev inequality, the lower bound of $P(\{|x \mu_x| < 2\})$ is
 - (A) o
 - (B) 0.75
 - (C) 0.95
 - (D) 0.99
- 9. Two random variables x and y have following relations: $y = b_0 + b_1 x + u$, and $x = a_0 + a_1 y + v$. Error terms u and v are independent of each other, which both obey standardized normal distribution. We can know...
 - (A) OLS estimator $\hat{b_1}$ is a consistent estimator.
 - (B) If $b_1 > 0$ and $a_1 > 0$, then OLS estimator \hat{b}_1 is downward inconsistent.
 - (C) If $b_1 > 0$ and $a_1 < 0$, then OLS estimator \hat{b}_1 is downward inconsistent.
 - (D) If $b_1 > 1$ and $a_1 > 0$, then OLS estimator \hat{b}_1 is upward inconsistent.

· 4 · 台大財金 © 許誠哲(2025)

10. Using following OLS estimations (see table below) for regression model $Y_i = b_0 + b_1 X_i + b_2 D_i + b_3 X_i D_i + u_i$, in which X is a continuous variable, and D is a binary variable, please answer which of the following statement(s) is correct:

S	umma	ry statistics		Coef	SD	t-stat	
R-sq	0.90	Mean of Y	1	Intercept	1.14	0.21	5.51
Adj. R-sq	0.89	Mean of X	0	X	1.80	0.27	6.74
N	50	Mean of D	0.6	D	-0.24	0.27	-0.91
		Mean of X*D	0.02	X*D	1.44	0.32	4.53

ANOVA		_		
	DF	SS	MS	F
Regression	3	345.61	115.20	135.53
Residual	46	39.10	0.85	
Sum	49	384.71		

- (A) Average marginal effect for a unit increase in X is 1.8.
- (B) Average marginal effect for a unit increase in X is 2.66.
- (C) The mean squared error of $Y_i = b_0 + b_1 X_i + b_2 D_i + b_3 X_i D_i + u_i$ is smaller than a simple linear regression model: $Y_i = b_0 + b_1 X_i + v_i$.
- (D) $\widehat{Cov(X,D)} \approx 0.02$.
- 11. Let $\{(X_i, Y_i)\}_{i=1}^q$ be a sequence of independently and $N(o, I_2)$ -distributed random vectors. Define the random variable:

$$Z_i(q) = \frac{X_i}{\sqrt{\sum_{i=1}^q Y_i^2/q}}.$$

Which of the following is right?

(A)
$$\mathbb{E}[Z_i(q)] = 0$$
.

© 許誠哲(2025) 台大財金 · 5 ·

- (B) $\mathbb{E}[Z_i^3(q)] = 0$.
- (C) $\mathbb{E}[Z_i^4(q)] = 3$, as $q \to \infty$.
- (D) $\mathbb{E}[Z_i^6(q)] = 15$, as $q \to \infty$.
- 12. Let $(Y_1, Y_2, ..., Y_n)'$ be a random vector with the distribution $N(0, \Sigma)$ and the covariance matrix:

$$\Sigma = \begin{bmatrix} 1 & \rho & \rho^2 & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \dots & \rho^{n-2} \\ \rho^2 & \rho & 1 & \dots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \dots & 1 \end{bmatrix}$$

for some $\rho > 0$ and $n \ge 3$. Define the sample average: $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Which of the following is right?

- (A) $var[\bar{Y}] = \frac{1}{n} + 2 \sum_{i=1}^{n} \left(1 \frac{i}{n}\right) \rho^{i}$.
- (B) $\lim_{n\to\infty} \operatorname{var}[\bar{Y}] = 0$.
- (C) $\operatorname{var}[n^{1/2}\bar{Y}] < 1 + 2\sum_{i=1}^{n} \left(1 \frac{i}{n}\right) \rho^{i}$. (D) $\lim_{n \to \infty} \operatorname{var}[n^{1/2}\bar{Y}] = 1$, if $\rho = n^{-1/2}$.
- 13. Let X be a $\chi^2(k)$ -distributed random variable, and Y be a N(0,1)distributed random variable. Suppose that X and Y are independent. Define the random variable: $W = X^{1/2}Y$. Which of the following is right?
 - (A) $\mathbb{E}[W^4] = 15$, if k = 1.
 - (B) $\mathbb{E}[W^4] = 30$, if k = 2.
 - (C) $\mathbb{E}[W^4] = 45$, if k = 3.
 - (D) None of the above choices (A)-(C).

· 6 · 台大財金

14. Let $\{(X_i, Z_i)'\}_{i=1}^n$ be a sequence of independently and $N(0, \Sigma)$ -distributed random vectors, with the covariance matrix:

© 許誠哲(2025)

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 2 \end{bmatrix}$$

for some constant $\rho > 0$. Define the random variable: $Y_i = X_i^2 + Z_i$, for all i's. Consider a linear regression: $Y_i = \beta_0 + \beta_1 X_i + e_i$, where (β_0, β_1) is a parameter vector, and e_i is an error term, for all i's. Let $(\hat{\beta}_0, \hat{\beta}_1)$ be the ordinary least squares estimator of (β_0, β_1) . Which of the following estimators is consistent for ρ , as $n \to \infty$?

(A)
$$\hat{\rho} = \hat{\beta}_1$$

(B)
$$\hat{\rho} = \hat{\beta}_1 + 29(\hat{\beta}_0 - 1)$$

(C)
$$\hat{\rho} = (\hat{\beta}_1 - \hat{\beta}_0)^2$$

- (D) None of the above choices (A)-(C).
- 15. Let $\{X_i\}_{i=1}^n$ be a sequence of independently and N(1,2)-distributed random variables. Define the sample average:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Which of the following statistics has the limiting distribution $\chi^2(1)$, as

$$n \to \infty$$
?

(A)
$$\frac{n}{2} (\bar{X}^2 - 2\bar{X} + 1).$$

(B)
$$\frac{n}{8} \left(\bar{X}^4 - 2\bar{X}^2 + 1 \right)$$
.

(C)
$$\frac{n}{16} (\bar{X}^6 - 2\bar{X}^3 + 1).$$

(D)
$$\frac{n}{32} (\bar{X}^8 - 2\bar{X}^4 + 1).$$

© 許誠哲(2025) 台大財金·7·

16. Let $\{(Y_i, X_{1i}, X_{2i})'\}_{i=1}^n$ be a sequence of independently and $N(0, \Sigma)$ -distributed random vectors, where Σ is a 3×3 covariance matrix. Consider the following two regressions:

$$Y_i = \beta_0 + \beta_1 X_{1i} + e_{1i},$$

and

$$Y_i = b_1 X_{1i} + b_2 X_{2i} + e_{2i},$$

for all i's, with the parameters: β_0 , β_1 , b_1 , b_2 and the error terms e_{1i} and e_{2i} . Let $(\hat{\beta}_0, \hat{\beta}_1)$ and (\hat{b}_1, \hat{b}_2) be the ordinary least squares estimators of (β_0, β_1) and (b_1, b_2) , respectively. Also, define the following two coefficients of determination:

$$R_1^2 = \frac{\sum_{i=1}^n (Y_{1i} - \bar{\hat{Y}}_1)^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

and

$$R_2^2 = \frac{\sum_{i=1}^n (Y_{2i} - \bar{Y}_2)^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2},$$

where $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$, $Y_{1i} = \hat{\beta}_0 + \hat{\beta}_1 X_{1i}$, $Y_{2i} = \hat{b}_1 X_{1i} + \hat{b}_2 X_{2i}$, $\bar{Y}_1 = n^{-1} \sum_{i=1}^{n} Y_{1i}$, $\bar{Y}_2 = n^{-1} \sum_{i=1}^{n} Y_{2i}$. Denote $\hat{e}_{1i} := Y_i - \hat{Y}_{1i}$ and $\hat{e}_{2i} := Y_i - \hat{Y}_{2i}$. Which of the following is right?

(A)
$$R_1^2 = 1 - \frac{\sum_{i=1}^n \hat{e}_{1i}^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

(B)
$$R_2^2 = 1 - \frac{\sum_{i=1}^n \hat{e}_{2i}^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

(C)
$$R_1^2 \neq 1 - \frac{\sum_{i=1}^n \hat{e}_{1i}^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

(D)
$$R_2^2 \neq 1 - \frac{\sum_{i=1}^n \hat{e}_{2i}^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}$$

· 8 · 台大財金 © 許誠哲(2025)

17. Let (X, Y, Z)' be a random vector with the distribution $N(o, I_3)$. According to the Cauchy-Schwarz inequality, which of the following results is right?

- (A) $\mathbb{E}[XY] \leq 1$.
- (B) $\mathbb{E}[XY^2] \leq \sqrt{3}$.
- (C) $\mathbb{E}[X^2Z^2] \leq 3$.
- (D) $\mathbb{E}[X^2Y^3Z^3] \leq 15\sqrt{3}$.
- 18. Let $\{(W_i, X_i, Y_i, Z_i)'\}_{i=1}^n$ be a sequence of random vectors that satisfies the following properties:

$$W_{i} = X_{i}^{2} + Y_{i}^{2} + Z_{i}^{2},$$

$$\begin{bmatrix} Y_{i} \\ Z_{i} \end{bmatrix} X_{i} \sim N \begin{pmatrix} X_{i} \\ X_{i}^{2} \end{bmatrix}, \begin{bmatrix} X_{i}^{2} & X_{i}^{3} \\ X_{i}^{3} & X_{i}^{4} \end{bmatrix}$$

and X_i is N(0,1)-distributed, for all i's. Consider a linear regression:

$$W_{i} = \alpha_{0} + \alpha_{1}X_{i} + \alpha_{2}X_{i}^{2} + \alpha_{3}X_{i}^{3} + \alpha_{4}X_{i}^{4} + e_{i},$$

where $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$ is a parameter vector, and e_i is an error term, for all i's. Also, let $(\hat{\alpha}_0, \hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3, \hat{\alpha}_4)$ be the ordinary least squares (OLS) estimator of $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$. Which of the following is the probability limit of $(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$, as $n \to \infty$?

- (A) (0,0,2,0,4)
- (B) (0, 2, 0, 3, 4)
- (C) (0,0,3,0,2)
- (D) None of the above choices (A)-(C).

19. Let $\{X_i\}_{i=1}^n$ be a sequence of independently and U(0,1)-distributed random variables. Define the statistic:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leq x),$$

for some fixed $x \in (0,1)$, where $\mathbb{1}(A)$ is the indicator function which equals one if A is true (otherwise, zero). Which of the following is right?

- (A) The limiting distribution of $n^{1/2}(F_n(x)/x-1)$ is N(0, 1/(x-1)), as $n \to \infty$.
- (B) The probability limit of $2F_n(x) 1$ is 2x 1, as $n \to \infty$.
- (C) The limiting variance of $n^{1/2} \left(F_n(x) / x^2 1/x \right)$ is $1/x^3 1/x^2$, as $n \to \infty$.
- (D) The probability limit of $F_n(x)$ $(1 F_n(x))$ is the same as the limiting variance of $n^{1/2}(F_n(x)-x)$, as $n\to\infty$.
- 20. Let $\{(X_i, e_i)\}_{i=1}^n$ be a sequence of independently and identically distributed random vectors with the properties: $X_i \sim N(0, 1)$ and

$$e_i \mid X_i \sim N(o, X_i^2).$$

Define the random variable: $Y_i = \beta X_i + e_i,$

$$Y_i = \beta X_i + e_i,$$

where β is a constant, for all i's. Which of the following is right?

- (A) The statistic $\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$ is consistent for β , as $n \to \infty$.
- (B) The statistic $\frac{\sum_{i=1}^{n} X_{i}^{2} Y_{i}}{\sum_{i=1}^{n} X_{i}^{3}}$ is inconsistent for β , as $n \to \infty$.
- (C) The statistic $\frac{\sum_{i=1}^{n} |X_i| Y_i}{\sum_{i=1}^{n} |X_i| X_i}$ is inconsistent for β , as $n \to \infty$.
- (D) The statistic $\frac{\sum_{i=1}^{n} X_i Y_i |X_i|^{-2}}{\sum_{i=1}^{n} (X_i |X_i|^{-1})^2}$ is not less efficient than $\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$, as $n \to \infty$ ∞ .