$$\Rightarrow \begin{cases} \alpha = 13.8 \text{ (rad/s}^2) \\ N = 91.3 \text{ (N)} \\ f = 20.1 \text{ (N)} \end{cases}$$

範例(11)

The center of the 100kg wheel with centroidal radius of gyration of 100mm has a velocity of 0.6m/s down the incline in the position shown. Calculate the normal reaction N under the wheel as rolls past position A. Assume that slipping occurs.

(台科機械)

【解】

(1)

$$\therefore \omega_1 = \frac{0.6}{0.15} = 4 \text{ (m/s)}$$

$$\omega_A = \frac{v_A}{0.15} = 6.667 v_A \text{ (m/s)}$$

5-128 突破動力學經典題型

∴ 由功能原理:
$$\Rightarrow T_1 + W_{1\to 2} = T_2$$

$$\Rightarrow \frac{1}{2} [(100)(0.1)^2 + (100)(0.15)^2](4)^2 + (100 \times 9.81)[0.3 \times \sin 30^\circ + 0.45(1 - \cos 30^\circ)]$$

$$= \frac{1}{2} [(100)(0.1)^2 + (100)(0.15)^2](6.667v_A)^2 \Rightarrow v_A = 1.793 \text{ (m/s)}$$

(2)曲率半徑用 0.45(m)

$$\because \sum F_y = ma_y \ (\uparrow +)$$

:.
$$N - 100 \times 9.81 = (100) \left(\frac{1.793^2}{0.45} \right) \Rightarrow N = 1695.4(N)(\uparrow)$$

範例(12)

The Lord of the Rings is the greatest adventure ever told. Five wizards were sent to Middle-earth to serve as advisors to oppose evil. Wizards possess great powers of body and mind. One day, a wizard released the ring of mass m and

radius r from rest on the edge of a large hemispherical bowl of radius R. The ring rolled without slipping during the motion. Determine:

- (1) the maximum angular velocity of the ring.
- (2) the force N exerted by the path on the ring as a function of θ , and
- (3)the rolling friction force as a function of θ . (台大機械)

【解】

(1)①由功能原理求
$$\theta$$
處之 ω =?

$$\Rightarrow T_1 + W_{1 \to 2} = T_2$$

$$\Rightarrow 0 + mg(R - r)\sin\theta = \frac{1}{2}(mr^2 + mr^2)\omega^2$$

$$\therefore \omega = \frac{\sqrt{g(R-r)\sin\theta}}{r}$$

$$\therefore \omega_{\max} = \frac{\sqrt{g(R-r)}}{r}$$

(2)求 θ 處時之N及f,以 θ 來表示:

①求ring本身運動時之 α 與ring繞著O點旋轉之 $\ddot{\theta}$ 之關係:

$$\therefore a_G = r\alpha = (R - r)\ddot{\theta}$$

$$\therefore \alpha = \frac{(R-r)}{r} \ddot{\theta}$$

$$\Rightarrow$$
 $(mg\cos\theta)(r) = (mr^2)(\alpha) + ma_G(r) = (2mr^2)\alpha$

$$\Rightarrow (mg\cos\theta)(r) = (2mr^2)\left(\frac{(R-r)\ddot{\theta}}{r}\right) \Rightarrow m(R-r)\ddot{\theta} = \frac{1}{2}mg\cos\theta \cdots (A)$$

$$\because \sum F_t = ma_t \ (\searrow +)$$

$$\therefore mg\cos\theta - f = m(R - r)\ddot{\theta} \cdot \cdots \cdot (B)$$

將(A)式代入(B)式中得:
$$\Rightarrow f = \frac{1}{2} mg \cos \theta$$

③求ring本身之 ω 與繞O點旋轉之 $\dot{\theta}$ 之關係:

5-130 突破動力學經典題型

範例 [13]

The 3kg uniform rod AB is connected to crank BD and to a collar of negligible mass, which can slide freely along rod EF. Knowing that in the position shown crank BD rotates with an angular velocity of 15rad/s and an angular acceleration of 60rad/s^2 , both clockwise, determine the reaction at A.

[解]

(1):
$$\vec{v}_{B} = (-15\vec{k}) \times (-0.08\vec{j}) = -1.2\vec{i} \text{ (m/s)}$$

$$\vec{a}_{B} = (-60\vec{k}) \times (-0.08\vec{j}) - (15)^{2} (-0.08\vec{j}) = -4.8\vec{i} + 18\vec{j} \text{ (m/s}^{2})$$
假設 $\vec{v}_{A} = v_{A}$ (\checkmark 30°)
$$\vec{v}_{A} = v_{A} \cos 30^{\circ} \vec{i} - v_{A} \sin 30^{\circ} \vec{j} = 0.866v_{A}\vec{i} - 0.5v_{A}\vec{j} \text{ (限設 } \vec{\omega}_{AB} = \omega_{AB}\vec{k}$$
又: $\vec{v}_{B} = \vec{v}_{A} + \vec{\omega}_{AB} \times \vec{r}_{B/A} = 0.866v_{A}\vec{i} - 0.5v_{A}\vec{j} + \omega_{AB}\vec{k} \times (0.5\vec{i})$

$$\Rightarrow \begin{cases} -1.2 = 0.866v_{A} \\ 0 = -0.5v_{A} + 0.5\omega_{AB} \end{cases} \Rightarrow v_{A} = -1.386 \text{ (m/s)}$$

$$\omega_{AB} = -1.386 \text{ (rad/s)}$$
(2) 假設 $\vec{a}_{A} = a_{A}$ (\checkmark 30°)
$$\vec{a}_{A} = 0.866a_{A}\vec{i} - 0.5a_{A}\vec{j} \text{ (Rb)} \vec{\alpha}_{AB} = \alpha_{AB}\vec{k}$$

$$\vec{a}_{B} = \vec{a}_{A} + \vec{\alpha}_{AB} \times \vec{r}_{B/A} + \vec{\omega}_{AB} \times (\vec{\omega}_{AB} \times \vec{r}_{B/A})$$

$$\Rightarrow -4.8\vec{i} + 18\vec{j} = 0.866a_{A}\vec{i} - 0.5a_{A}\vec{j} + \alpha_{AB}\vec{k} \times (0.5\vec{i}) - (1.386)^{2}(0.5\vec{i})$$

$$\Rightarrow \begin{cases} -4.8 = 0.866a_{A} - 0.96 \\ 18 = -0.5a_{A} + 0.5\alpha_{AB} \end{cases} \Rightarrow \begin{cases} a_{A} = -4.434 \,(\text{m/s}^{2})(\nwarrow) \\ \alpha_{AB} = 31.57 \,(\text{rad/s}^{2})(\checkmark) \end{cases}$$

$$(3) \vec{x} \,(a_{G})_{x} \,, (a_{G})_{y} \Rightarrow AB \not\models \vec{a}_{G} = \vec{a}_{B} + \vec{\alpha}_{AB} \times \vec{r}_{G/B} + \vec{\omega}_{AB} \times (\vec{\omega}_{AB} \times \vec{r}_{G/B})$$

$$= -4.8\vec{i} + 18\vec{j} + (31.57\vec{k}) \times (-0.25\vec{i}) - (1.386)^{2}(-0.25\vec{i})$$

$$= -4.32\vec{i} + 10.11\vec{j} \,(\text{m/s}^{2})$$

(4)取 AB 桿分析:

範例(14)

The 24kg uniform slender bar AB is mounted on end rollers of negligible mass and rotates about the fixed point O as it follows the circular path in the vertical plane. The bar is released from a position which gives it an angular velocity $\omega = 2 \operatorname{rad/sec}$ as it passes the position $\theta = 45^{\circ}$. Calculate the forces F_A and F_B exerted by the guide on the rollers for this instant.

