114年高醫物理試題精解

Choose one best answer for the following questions 【單選題】每題1分。

1. A particle moves in a track and its speed are recorded and plotted in the

figure. Which statement is correct?

- (A) It is stationary from t = 0.0 to t = 0.5 second
- (B) It has maximum acceleration at t=1.5 seconds
- (C) No external force acting on the particle at t > 2.5 seconds

- (D) The maximum force received by this particle is at t = 1.5 seconds
- (E) This particle received a constant force against its motion during 1.0 to 2.0 seconds.

Ans:(C)

▶ 解析:

- (A) It is *constant velocity* from t = 0.0 to t = 0.5 second.
- (B) It has maximum *velocity* at t = 1.5 seconds.
- (D) The force is zero at t = 1.5 seconds.
- (E) This particle received a *variable force* against its motion during 1.0 to 2.0 seconds.
- 2. A particle moves in simple harmonic motion according to $x = 2\sin(15t)$, where x is in meters and t is in seconds. Its **maximum** velocity in m/s is

(A) $30 \sin(15t)$ (B) $2 \cos(15t)$ (C) 15 (D) 30 (E) None of the above.

Ans:(D)

▶ 解析:

$$v = \frac{dx}{dt} = 2 \times 15\cos(15t) = 30\cos(15t) = v_m \cos(\omega t) \Rightarrow v_m = 30$$

- 3. Consider a very small hole in the bottom of a tank 20 cm in diameter filled with water to a height of 50 cm. Find the speed at which the water exits the tank through the hole.
 - (A) 3.1 m/s (B) 9.8 m/s (C) 31.3 m/s (D) 34.9 m/s (E) 980 m/s.

Ans:(A)

▶解析:

$$v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 0.5} = 3.13[m/s]$$

4. A small object of mass m is suspended from a string of length L. The gravitational acceleration is g. The object revolves in a horizontal circle of radius r with constant speed. Find the period T of revolution.

- (A) $\pi \sqrt{g \tan \theta / L}$
- (B) $\pi \sqrt{L \sin \theta / g}$
- (C) $2\pi\sqrt{L\cos\theta/g}$
- (D) $2\pi\sqrt{g\sec\theta/L}$
- (E) $\pi \sqrt{2g\cos\theta/L}$.

Ans:(C)

▶ 解析:

由
$$\vec{F} = m\vec{a}$$

$$\begin{cases} T\sin\theta = m\frac{v^2}{r} \Rightarrow v = \sqrt{rg\tan\theta} \\ T\cos\theta = mg \end{cases}$$

$$T = \frac{2\pi r}{v} = \frac{2\pi (L\sin\theta)}{\sqrt{rg\tan\theta}} = \frac{2\pi (L\sin\theta)}{\sqrt{L\sin\theta g\tan\theta}} = 2\pi \sqrt{\frac{L\cos\theta}{g}}$$

- 5. A carnival merry-go-round rotates about a vertical axis at a constant rate. A man standing on the edge has a constant speed of 3.7 m/s and a centripetal acceleration \vec{a} of magnitude 1.8 m/s². Position vector \vec{r} locates him relative to the rotation axis. What is the magnitude of \vec{r} ?
 - (A) 3.5 m (B) 5.6 m (C) 6.4 m (D) 7.6 m (E) 12.4 m.

Ans:(D)

▶ 解析:

$$a_r = \frac{v^2}{r} \Rightarrow 1.8 = \frac{(3.7)^2}{r} \Rightarrow r = 7.6[m]$$

6. A 2 kg object is subjected to three forces that give it an acceleration $\vec{a} = (-8\text{m/s}^2) \hat{i} + (6 \text{ m/s}^2) \hat{j}$. If two of the three forces are $\vec{F}_i = (30 \text{ N}) \hat{i} + (16 \text{ N}) \hat{j}$ and $\vec{F}_2 = (-12 \text{ N}) \hat{i} + (8 \text{ N}) \hat{j}$, find the third force.

(A)
$$(16 \text{ N})\hat{i} - (12 \text{ N})\hat{j}$$

(B)
$$(-34 \text{ N})\hat{i} - (12 \text{ N})\hat{j}$$

(C)
$$(20 \text{ N}) \hat{i} + (12 \text{ N}) \hat{j}$$

(D)
$$(-34 \text{ N})\hat{i} + (12 \text{ N})\hat{j}$$

(E)
$$(20 \text{ N})\hat{i} + (18 \text{ N})\hat{j}$$
.

Ans:(B)

▶解析:

7. n moles of gas in a container of volume V_i at temperature T expands rapidly into an evacuated region after a membrane is broken. The final volume of the gas-occupied space is V_f . What is the change in thermal

4-114-4 **《西醫物**翠歷屆試題精解

energy? (The universal gas constant is R.)

(A) $2nRT(V_f - V_i) / V_i$

(B) $nRT \ln(V_f / V_i)$

(C) $2nRT(V_f/V_i)$

(D) $2nRT \ln(2V_f / V_i)$

(E) $nRT(V_i + V_f) / V_f$.

Ans:(B)

▶ 解析:

等溫過程熱的改變 $\Delta Q = nRT \ln \left| \frac{V_f}{V_i} \right|$

- 8. A medical defibrillator stores 320J in a 40.0µF capacitor. What is the voltage across the capacitor?

- (A) 2.8 V (B) 4.0 V (C) 2.8 kV (D) 4.0 kV (E) 2.8 MV.

Ans:(D)

▶ 解析:

$$U_c = \frac{1}{2}CV^2 \Rightarrow 320 = \frac{1}{2}(40 \times 10^{-6})V^2 \Rightarrow V = 4000$$

9. The figure shows three electric charges labeled Q_1 , Q_2 , Q_3 , and some electric field lines in the region surrounding the charges. What are the signs of the three charges?

- (A) Q_1 is negative, Q_2 is positive, Q_3 is negative
- (B) Q_1 is positive, Q_2 is positive, Q_3 is negative
- (C) Q_1 is positive, Q_2 is negative, Q_3 is positive
- (D) Q_1 is positive, Q_2 is negative, Q_3 is negative
- (E) Q_1 is negative, Q_2 is negative, Q_3 is negative.

Ans:(C)

▶ 解析:

根據電力線分佈,可知 Q1 is positive, Q2 is negative, Q3 is positive